Reduce phenotypes in longitudinal data to cumulative sums of phenotypes.
Source:R/cumulativePheno.R
cumulativePheno.Rd
Often in bellwether experiments we are curious about the effect of some treatment vs control. For certain routes in analysing the data this requires considering phenotypes as relative differences compared to a control.
Usage
cumulativePheno(
df,
phenotypes = NULL,
group = "barcode",
timeCol = "DAS",
traitCol = "trait",
valueCol = "value"
)
Arguments
- df
Dataframe to use, this can be in long or wide format.
- phenotypes
A character vector of column names for the phenotypes that should be compared against control.
- group
A character vector of column names that identify groups in the data. Defaults to "barcode". These groups will be calibrated separately, with the exception of the group that identifies a control within the greater hierarchy.
- timeCol
Column name to use for time data.
- traitCol
Column with phenotype names, defaults to "trait". This should generally not need to be changed from the default. If this and valueCol are present in colnames(df) then the data is assumed to be in long format.
- valueCol
Column with phenotype values, defaults to "value". This should generally not need to be changed from the default.
Examples
# \donttest{
f <- "https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/pcv4-single-value-traits.csv"
tryCatch(
{
sv <- read.pcv(
f,
reader = "fread"
)
sv$genotype <- substr(sv$barcode, 3, 5)
sv$genotype <- ifelse(sv$genotype == "002", "B73",
ifelse(sv$genotype == "003", "W605S",
ifelse(sv$genotype == "004", "MM", "Mo17")
)
)
sv$fertilizer <- substr(sv$barcode, 8, 8)
sv$fertilizer <- ifelse(sv$fertilizer == "A", "100",
ifelse(sv$fertilizer == "B", "50", "0")
)
sv <- bw.time(sv,
plantingDelay = 0, phenotype = "area_pixels", cutoff = 10,
timeCol = "timestamp", group = c("barcode", "rotation"), plot = TRUE
)$data
sv <- bw.outliers(sv,
phenotype = "area_pixels", group = c("DAS", "genotype", "fertilizer"),
plotgroup = c("barcode", "rotation")
)$data
phenotypes <- colnames(sv)[19:35]
phenoForm <- paste0("cbind(", paste0(phenotypes, collapse = ", "), ")")
groupForm <- "DAS+DAP+barcode+genotype+fertilizer"
form <- as.formula(paste0(phenoForm, "~", groupForm))
sv <- aggregate(form, data = sv, mean, na.rm = TRUE)
pixels_per_cmsq <- 42.5^2 # pixel per cm^2
sv$area_cm2 <- sv$area_pixels / pixels_per_cmsq
sv$height_cm <- sv$height_pixels / 42.5
df <- sv
phenotypes <- c("area_cm2", "height_cm")
group <- c("barcode")
timeCol <- "DAS"
df <- cumulativePheno(df, phenotypes, group, timeCol)
sv_l <- read.pcv(
f,
mode = "long", reader = "fread"
)
sv_l$genotype <- substr(sv_l$barcode, 3, 5)
sv_l$genotype <- ifelse(sv_l$genotype == "002", "B73",
ifelse(sv_l$genotype == "003", "W605S",
ifelse(sv_l$genotype == "004", "MM", "Mo17")
)
)
sv_l$fertilizer <- substr(sv_l$barcode, 8, 8)
sv_l$fertilizer <- ifelse(sv_l$fertilizer == "A", "100",
ifelse(sv_l$fertilizer == "B", "50", "0")
)
sv_l <- bw.time(sv_l,
plantingDelay = 0, phenotype = "area_pixels", cutoff = 10,
timeCol = "timestamp", group = c("barcode", "rotation")
)$data
sv_l <- cumulativePheno(sv_l,
phenotypes = c("area_pixels", "height_pixels"),
group = c("barcode", "rotation"), timeCol = "DAS"
)
},
error = function(e) {
message(e)
}
)
#> Warning: 16 groupings had all observations removed
# }